The Landick Lab
University of Wisconsin-Madison
 
Research Publications Lab Members Join Us Contact Us Links Lab only



Robert Landick
Charles Yanofsky Professor
of Biochemistry & Bacteriology
5441 Microbial Sciences
1550 Linden Dr.
University of Wisconsin
Madison, WI 53706-1567

Ph. 608 265 8475
Fax 608 262 9865


Current News

Program Links
University of Wisconsin-Madison
Department of Biochemistry
Department of Bacteriology
Department of Biomolecular Chemistry
iPIB - Integrated Program in Biochemistry
Microbiology Doctoral Training Program
CMB Training Program
Microbial Genome Biology Focus Group (CMB)
Genetics Training Program
Biophysics Training Program
Molecular Biosciences Training Program
Biotechnology Training Program
Biotechnology Center
Great Lakes Bioenergy Research Center
Micro/Biochem 612 Resources




Welcome to the Landick Lab

Our research focuses on (1) RNA polymerase, the central enzyme of gene expression in all free-living organisms; (2) the mechanisms by which gene expression by RNA polymerase is regulated and can be re-programmed for biodesign; and (3) applications of these basic research advances to microbial biotechnology and to antibiotic discovery. Our basic research focus is to understand how the fundamental properties of RNA polymerase, largely conserved from bacteria to human, make it susceptible to pausing, arrest, or termination and how elongation regulators, nucleoprotein structures, and metabolic, developmental, and environmental signals alter these properties. We use a variety of approaches, including genetics, biomolecular chemistry, synthetic biology, systems biology, biophysics, and structural biology, to study both fundamental and applied paradigms of gene regulation. Lab members develop and apply expertise on one or more approach to both individual and collaborative projects. Follow links here to learn more about our research and our lab.

Check out our latest publications

Kolb, K. E., P. P. Hein, and R. Landick. 2014. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. J. Biol. Chem. 289, 1151-1163.

Nayak,D., M. Voss, T. Windgassen, R. A. Mooney, and R. Landick. 2013. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol. Cell 50, 882-893.

Mooney, R. A., and R. Landick. 2013. Building a better stop sign: understanding the signals that terminate transcription. Nat. Methods 10, 618-619.

Weixlbaumer, A., K. Leon, R. Landick, and S. A. Darst. 2013. Structural basis of transcriptional pausing in bacteria. Cell 152, 431-441.

Srivastava,D. B., K. Leon, J. Osmundson, A. L. Garner, L. A. Weiss, L. F. Westblade, M. S. Glickman, R. Landick, S. A. Darst, C. L. Stallings, and E. A. Campbell. 2013. Structure and function of CarD, an essential mycobacterial transcription factor. Proc. Natl. Acad. Sci. USA 110, 12619-12624.

Chung,D., D. Park, K. Myers, J. Grass, P. Kiley, R. Landick, and S. Keles. 2013. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-seq data. PLoS Comput. Biol. 9, e1003246.

Park,D. M., M. S. Akhtar, A. Z. Ansari, R. Landick, and P. J. Kiley. 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genetics 9, e1003839.

Myers,K. S., H. Yan, I. M. Ong, D. Chung, K. Liang, F. Tran, S. Keles, R. Landick, and P. J. Kiley. 2013. Genome-scale Analysis of Escherichia coli FNR Reveals Complex Features of Transcription Factor Binding. PLoS Genetics 9, e1003565.

Decanio,M. S., R. Landick, and R. J. Haft. 2013. The non-pathogenic Escherichia coli strain W secretes SslE via the virulence-associated type II secretion system beta. BMC Microbiol. 13, 130.

Peters,J. M., R. A. Mooney, J. A. Grass, E. D. Jessen, F. Tran, and R. Landick. 2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621-2633.

Koslover DJ, Fazal FM, Mooney RA, Landick R, Block SM. 2012.  Binding and translocation of termination factor Rho studied at the single-molecule level. J. Mol. Biol. 423, 664-676.

Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P. 2012.  An alpha-helix to beta-barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150, 291-303.

Palangat M, Larson M, Hu X, Gnatt A, Block S, Landick R. 2012. Efficient reconstitution of transcription elongation complexes for single-molecule studies of eukaryotic RNA polymerase II. Transcription 3, 146-153.

Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. 2012. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc. Natl. Acad. Sci. USA 109, 6555-7560.

Schwalbach, M. S., D. H. Keating, M. Tremaine, W. D. Marner, Y. Zhang, W. Bothfeld, A. Higbee, J. A. Grass, C. Cotten, J. L. Reed, L. da Costa Sousa, M. Jin, V. Balan, J. Ellinger, B. Dale, P. J. Kiley, and R. Landick. 2012. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Appl. Environ. Microbiol. 78, 3442-3457.

Palangat, M.P., J.A. Grass, M.F. Langelier, B. Coulombe and R. Landick. 2011.  The RPB2 Flap Loop of Human RNA Polymerase II Is Dispensable for Transcription Initiation and Elongation Mol. Cell Biol. 31, 3312.

Hein, P., M. Palangat and R. Landick. 2011.  RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 50, 7002.

Sevostyanova A., G.A. Belogurov, Mooney RA, Landick R, Artsimovitch I. 2011.  The β Subunit Gate Loop Is Required for RNA Polymerase Modification by RfaH and NusG. Mol. Cell 43, 253-26.