Below is a full list of publications from the Landick lab, including original research articles, literature reviews, protocols, and book chapters. All links will open in a new tab.
Landick publications search on PubMed (link opens in new tab)
- Saba J, Flores K, Marshall B, Engstrom MD, Peng Y, Garje AS, Comstock L, Landick R. 2024. Bacteroides expand the functional versatility of a universal transcription factor and transcribed DNA to program capsule diversity. bioRxiv (preprint). https://doi.org/10.1101/2024.06.21.599965
- Mooney RA, Zhu J, Saba J, Landick R. 2024. NusG-Spt5 transcription factors: universal, dynamic modulators of gene expression. J Mol Biol. In press. https://doi.org/10.1016/j.jmb.2024.168814
- Delbeau M, Froom R, Landick R, Darst SA, Campbell EA. 2024. The yin and yang of the universal transcription factor NusG. Curr Opin Microbiol. 81, 102540. https://doi.org/10.1016/j.mib.2024.102540
- Boudreau BA, Hustmyer CM, Kotlajich MV, Landick R. 2024. In vitro transcription assay to quantify effects of H-NS filaments on RNA chain elongation by RNA polymerase. Methods Mol Biol. 2819, 381-419. https://doi.org/10.1007/978-1-0716-3930-6_18
- Hustmyer CM, Landick R. 2024. Bacterial chromatin proteins, transcription, and DNA topology: inseparable partners in the control of gene expression. Mol Microbiol. 122, 81-112. https://doi.org/10.1111/mmi.15283
- Bao Y, Cao X, Landick R. 2024. RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations. Nucleic Acids Res. 52, 4556-4574. https://doi.org/10.1093/nar/gkae209
- Eckartt KA, Delbeau M, Munsamy-Govender V, DeJesus MA, Azadian ZA, Reddy AK, Chandanani J, Poulton NC, Quiñones-Garcia S, Bosch B, Landick R, Campbell EA, Rock JM. 2024. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature. 628, 186-194. https://doi.org/10.1038/s41586-024-07206-5
- Lan F, Saba J, Ross TD, Zhou Z, Krauska K, Anantharaman K, Landick R, Venturelli OS. 2024. Massively parallel single-cell sequencing of diverse microbial populations. Nat Methods. 21, 228-235. https://doi.org/10.1038/s41592-023-02157-7
- Marshall B, Amritkar K, Wolfe M, Kaçar B, Landick R. 2023. Evolutionary flexibility and rigidity in the bacterial methylerythritol phosphate (MEP) pathway. Front Microbiol. 14, 1286626. https://doi.org/10.3389/fmicb.2023.1286626
- Lan F, Saba J, Qian Y, Ross T, Landick R, Venturelli OS. 2023. Single-cell analysis of multiple invertible promoters reveals differential inversion rates as a strong determinant of bacterial population heterogeneity. Sci Adv. 9, eadg5476. https://doi.org/10.1126/sciadv.adg5476
- Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA, Campbell EA, Landick R. 2023. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Mol Cell. 83, 1474-1488.e8. https://doi.org/10.1016/j.molcel.2023.04.007
- Kang JY, Mishanina TV, Bao Y, Chen J, Llewellyn E, Liu J, Darst SA, Landick R. 2023. An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Proc Natl Acad Sci U S A. 120, e2215945120. https://doi.org/10.1073/pnas.2215945120
- Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA, Darst SA. 2023. Structural basis for substrate selection by the SARS-CoV-2 replicase. Nature. 614, 781-787. https://doi.org/10.1038/s41586-022-05664-3
- You L, Omollo EO, Yu C, Mooney RA, Shi J, Shen L, Wu X, Wen A, He D, Zeng Y, Feng Y, Landick R, Zhang Y. 2023. Structural basis for intrinsic transcription termination. Nature. 613, 783-789. https://doi.org/10.1038/s41586-022-05604-1
- Hustmyer CM, Wolfe MB, Welch RA, Landick R. 2022. RfaH counter-silences inhibition of transcript elongation by H-NS-StpA nucleoprotein filaments in pathogenic Escherichia coli. mBio. 13, e0266222. https://doi.org/10.1128/mbio.02662-22
- Zhang Y, Myers KS, Place M, Serate J, Xie D, Pohlmann E, La Reau A, Landick R, Sato TK. 2022. Transcriptomic data sets for Zymomonas mobilis 2032 during fermentation of ammonia fiber expansion (AFEX)-pretreated corn stover and switchgrass hydrolysates. Microbiol Resour Announc. 11, e0056422. https://doi.org/10.1128/mra.00564-22
- Cao X, Landick R, Campbell EA. 2022. A roadmap for designing narrow-spectrum antibiotics targeting bacterial pathogens. Microb Cell. 9, 136-138. https://doi.org/10.15698/mic2022.07.780
- Shen BA, Hustmyer CM, Roston D, Wolfe MB, Landick R. 2022. Bacterial H-NS contacts DNA at the same irregularly spaced sites in both bridged and hemi-sequestered linear filaments. iScience. 25, 104429. https://doi.org/10.1016/j.isci.2022.104429
- Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. 2022. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature. 604, 541-545. https://doi.org/10.1038/s41586-022-04545-z
- Dai W, Darst SA, Dunham CM, Landick R, Petsko G, Weixlbaumer A. 2021. Seeing gene expression in cells: the future of structural biology. Fac Rev. 10, 79. https://doi.org/10.12703/r-01-000004
- Palo MZ, Zhu J, Mishanina TV, Landick R. 2021. Conserved trigger loop histidine of RNA polymerase II functions as a positional catalyst primarily through steric effects. Biochemistry. 60, 3323-3336. https://doi.org/10.1021/acs.biochem.1c00528
- Lee SB, Tremaine M, Place M, Liu L, Pier A, Krause DJ, Xie D, Zhang Y, Landick R, Gasch AP, Hittinger CT, Sato TK. 2021. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng. 68, 119-130. https://doi.org/10.1016/j.ymben.2021.09.008
- Bao Y, Landick R. 2021. Obligate movements of an active site-linked surface domain control RNA polymerase elongation and pausing via a Phe pocket anchor. Proc Natl Acad Sci U S A. 118, e2101805118. https://doi.org/10.1073/pnas.2101805118
- Landick R. 2021. Transcriptional pausing as a mediator of bacterial gene regulation. Annu Rev Microbiol. 75, 291-314. https://doi.org/10.1146/annurev-micro-051721-043826
- Shiver AL, Osadnik H, Peters JM, Mooney RA, Wu PI, Henry KK, Braberg H, Krogan NJ, Hu JC, Landick R, Huang KC, Gross CA. 2021. Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Mol Cell. 81, 2201-2215.e9. https://doi.org/10.1016/j.molcel.2021.04.027
- Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. 2021. Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex. Proc Natl Acad Sci U S A. 118, e2102516118. https://doi.org/10.1073/pnas.2102516118
- Saba J, Cao X, Landick R. 2021. Bacterial transcription continues to surprise: activation by alarmone-mediated σ-factor tethering. Mol Cell. 81, 8-9. https://doi.org/10.1016/j.molcel.2020.12.031
- Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, DarsProc Natl Acad Sci U S A. 117, 30423-30432. https://doi.org/10.1073/pnas.2013706117 2020. The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase.
- Proc Natl Acad Sci U S A. 117, 29658-29668. https://doi.org/10.1073/pnas.2010087117 , Landick R, Do 2020. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation.
- Stoneman HR, Wrobel RL, Place M, Graham M, Krause DJ, De Chiara M, Liti G, Schacherer J, Landick R, Gasch AP, Sato TK, Hittinger CT. 2020. CRISpy-Pop: a web tool for designing CRISPR/Cas9-driven genetic modifications in diverse populations. G3 (Bethesda). 10, 4287-4294. https://doi.org/10.1534/g3.120.401498
- Myers KS, Vera JM, Lemmer KC, Linz AM, Landick R, Noguera DR, Donohue TJ. 2020. Genome-wide identification of transcription start sites in two Alphaproteobacteria, Rhodobacter sphaeroides 2.4.1 and Novosphingobium aromaticivorans DSM 12444. Microbiol Resour Announc. 9, e00880-20. https://doi.org/10.1128/MRA.00880-20
- Kurumbang NP, Vera JM, Hebert AS, Coon JJ, Landick R. 2020. Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose. PLoS One. 15, e0226235. https://doi.org/10.1371/journal.pone.0226235
- Vera JM, https://doi.org/10.1128/mSystems.00250-20 Landick R. 2020. Genome-scale transcription-translation mapping reveals features of Zymomonas mobilis transcription units and promoters. mSystems. 5, e00250-20.
- Liu Y, Ghosh IN, Martien JI, Zhang Y, Amador-Noguez D, Landick R. 2020. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metab Eng. 61, 261-274. https://doi.org/10.1016/j.ymben.2020.06.005
- Harden TT, Herlambang KS, Chamberlain M, Lalanne JB, Wells CD, Li GW, Landick R, Hochschild A, Kondev J, Gelles J. 2020. Alternative transcription cycle for bacterial RNA polymerase. Nat Commun. 11, 448. https://doi.org/10.1038/s41467-019-14208-9
- Zhang Y, Vera JM, Xie D, Serate J, Pohlmann E, Russell JD, Hebert AS, Coon JJ, Sato TK, Landick R. 2019. Multiomic fermentation using chemically defined synthetic hydrolyzates revealed multiple effects of lignocellulose-derived inhibitors on cell physiology and xylose utilization in Zymomonas mobilis. Front Microbiol. 10, 2596. https://doi.org/10.3389/fmicb.2019.02596
- Kim J, Tremaine M, Grass JA, Purdy HM, Landick R, Kiley PJ, Reed JL. 2019. Systems metabolic engineering of Escherichia coli improves coconversion of lignocellulose-derived sugars. Biotechnol J. 14, e1800441. https://doi.org/10.1002/biot.201800441
- Shen BA, Landick R. 2019. Transcription of bacterial chromatin. J Mol Biol. 431, 4040-4066. https://doi.org/10.1016/j.jmb.2019.05.041
- Kang JY, Mishanina TV, Landick R, Darst SA. 2019. Mechanisms of transcriptional pausing in bacteria. J Mol Biol. 431, 4007-4029. https://doi.org/10.1016/j.jmb.2019.07.017
- Liu Y, Landick R, Raman S. 2019. A regulatory NADH/NAD+ redox biosensor for bacteria. ACS Synth Biol. 8, 264-273. https://doi.org/10.1021/acssynbio.8b00485
- Stumper SK, Ravi H, Friedman LJ, Mooney RA, Corrêa IR, Gershenson A, Landick R, Gelles J. 2019. Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription. eLife. 8, e40576. https://doi.org/10.7554/eLife.40576
- Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. 2019. RNA polymerase clamp movement aids dissociation from DNA but is not required for RNA release at intrinsic terminators. J Mol Biol. 431, 696-713. https://doi.org/10.1016/j.jmb.2019.01.003
- Saba J, Chua XY, Mishanina TV, Nayak D, Windgassen TA, Mooney RA, Landick R. 2019. The elemental mechanism of transcriptional pausing. eLife. 8, e40981. https://doi.org/10.7554/eLife.40981
- Ghosh IN, Martien J, Hebert AS, Zhang Y, Coon JJ, Amador-Noguez D, Landick R. 2019. OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate. Metab Eng. 52, 324-340. https://doi.org/10.1016/j.ymben.2018.12.008
- Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM. 2018. Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol Cell. 71, 911-922.e4. https://doi.org/10.1016/j.molcel.2018.07.014
- Boudreau BA, Kotlajich MV, Landick R. 2018. In vitro transcription assay to quantify effects of H-NS filaments on RNA chain elongation by RNA polymerase. In: Dame R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837, pp. 351-386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_18
- Higgins DA, Young MKM, Tremaine M, Sardi M, Fletcher JM, Agnew M, Liu L, Dickinson Q, Peris D, Wrobel RL, Hittinger CT, Gasch AP, Singer SW, Simmons BA, Landick R, Thelen MP, Sato TK. 2018. Natural variation in the multidrug efflux pump SGE1 underlies ionic liquid tolerance in yeast. Genetics. 210, 219-234. https://doi.org/10.1534/genetics.118.301161
- Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. 2018. Structural basis for transcript elongation control by NusG family universal regulators. Cell. 173, 1650-1662.e14. https://doi.org/10.1016/j.cell.2018.05.017
- Yang S, Vera JM, Grass J, Savvakis G, Moskvin OV, Yang Y, McIlwain SJ, Lyu Y, Zinonos I, Hebert AS, Coon JJ, Bates DM, Sato TK, Brown SD, Himmel ME, Zhang M, Landick R, Pappas KM, Zhang Y. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol Biofuels. 11, 125. https://doi.org/10.1186/s13068-018-1116-x
- Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. 2018. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res. 46, 5525-5546. https://doi.org/10.1093/nar/gky265
- Helmling C, Klotzner DP, Sochor F, Mooney RA, Wacker A, Landick R, Furtig B, Heckel A, Schwalbe H. 2018. Life times of metastable states guide regulatory signaling in transcriptional riboswitches. Nat Commun. 9, 944. https://doi.org/10.1038/s41467-018-03375-w
- Kang J, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. 2018. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Mol Cell. 69, 802-815.e1. https://doi.org/10.1016/j.molcel.2018.01.018
- Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. 2018. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. Elife. 7, e34823. https://doi.org/10.7554/eLife.34823
- Bottoms S, Dickinson Q, McGee M, Hinchman L, Higbee A, Hebert A, Serate J, Xie D, Zhang Y, Coon JJ, Myers CL, Landick R, Piotrowski JS. 2018. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast. Microb Cell Fact. 17, 5. https://doi.org/10.1186/s12934-017-0848-9
- Ray-Soni A, Mooney RA, Landick R. 2017. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proc Natl Acad Sci U S A. 114, E9233-E9242. https://doi.org/10.1073/pnas.1706247114
- Harwig A, Landick R, Berkhout B. 2017. The battle of RNA synthesis: virus versus host. Viruses. 9, E309. https://doi.org/10.3390/v9100309
- Welch R, Chung D, Grass J, Landick R, Keles S. 2017. Data exploration, quality control and statistical analysis of ChIP-exo/nexus experiments. Nucleic Acids Res. 45, e145. https://doi.org/10.1093/nar/gkx594
- Mishanina TV, Palo MZ, Nayak D, Mooney RA, Landick R. 2017. Trigger loop of RNA polymerase is a positional, not acid-base, catalyst for both transcription and proofreading. Proc Natl Acad Sci U S A. 114, E5103-E5112. https://doi.org/10.1073/pnas.1702383114
- Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. 2017. RNA polymerase motions during promoter melting. Science. 356, 863-866. https://doi.org/10.1126/science.aam7858
- Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm S, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Furtig B, Wohnert J, Schwalbe H. 2017. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. Elife. 6, e21297. https://doi.org/10.7554/eLife.21297
- Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P. 2017. Architecture of a transcribing-translating expressome. Science. 356, 194-197. https://doi.org/10.1126/science.aal3059
- Tetone LE, Friedman LJ, Osborne ML, Ravi H, Kyzer S, Stumper SK, Mooney RA, Landick R, Gelles J. 2017. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc Natl Acad Sci U S A. 114, E1081-E1090. https://doi.org/10.1073/pnas.1616525114
- Sato TK, Tremaine M, Parreiras LS, Hebert AS, Myers KS, Higbee AJ, Sardi M, McIlwain SJ, Ong IM, Breuer RJ, Narasimhan RA, McGee MA, Dickinson Q, La Reau A, Xie D, Tian M, Piotrowski JS, Reed JL, Zhang Y, Coon JJ, Hittinger CT, Gasch AP, Landick R. 2016. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genet. 12, e1006372. Erratum published in PLoS Genet., 12, e1006447. https://doi.org/10.1371/journal.pgen.1006372
- Ghosh IN, Landick R. 2016. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis. ACS Synth Biol. 5, 1519-1534. https://doi.org/10.1021/acssynbio.6b00121
- McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers K, Riley NM, Buzzell A, Parreiras LS, Ong IM, Landick R, Coon JJ, Gasch AP, Sato TK, Hittinger CT. 2016. Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research. G3 (Bethesda). 6, 1757-1766. https://doi.org/10.1534/g3.116.029389
- Ray-Soni A, Bellecourt MJ, Landick R. 2016. Mechanisms of bacterial transcription termination: all good things must end. Annu Rev Biochem. 85, 319-347. https://doi.org/10.1146/annurev-biochem-060815-014844
- Zhang J, Landick R. 2016. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem Sci. 41, 293-310. https://doi.org/10.1016/j.tibs.2015.12.009
- Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS. 2016. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Fact. 15, 17. https://doi.org/10.1186/s12934-016-0417-7
- Ronayne EA, Wan YC, Boudreau BA, Landick R, Cox MM. 2016. P1 ref endonuclease: a molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genet. 12, e1005797. https://doi.org/10.1371/journal.pgen.1005797
- Harden TT, Wells CD, Friedman LJ, Landick R, Hochschild A, Kondev J, Gelles J. 2016. Bacterial RNA polymerase can retain sigma70 throughout transcription. Proc Natl Acad Sci U S A. 113, 602-607. https://doi.org/10.1073/pnas.1513899113
- Landick R, Wade JT, Grainger DC. 2015. H-NS and RNA polymerase: a love-hate relationship? Curr Opin Microbiol. 24, 53-59. https://doi.org/10.1016/j.mib.2015.01.009
- Serate J, Xie D, Pohlmann E, Donald C Jr, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. 2015. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. Biotechnol Biofuels. 8, 180. https://doi.org/10.1186/s13068-015-0356-2
- Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. 2015. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife. 4, e08504. https://doi.org/10.7554/eLife.08504
- Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, Smith DL, Higbee AJ, Ulbrich A, Coon JJ, Deshpande R, Bukhman YV, McIlwain S, Ong IM, Myers CL, Boone C, Landick R, Ralph J, Kabbage M, Ohya Y. 2015. Plant-derived antifungal agent poacic acid targets beta-1,3-glucan. Proc Natl Acad Sci U S A. 112, E1490-1497. https://doi.org/10.1073/pnas.1410400112
- Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst SA. 2015. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci U S A. 112, E4178-E4187. https://doi.org/10.1073/pnas.1502368112
- Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. 2015. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife. 4, e04970. https://doi.org/10.7554/eLife.04970
- Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. 2014. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Res. 42, 12707-12721. https://doi.org/10.1093/nar/gku997
- Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA, Mooney RA, Landick R. 2014. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat Struct Mol Biol. 21, 794-802. https://doi.org/10.1038/nsmb.2867
- Haft RJ, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A. 111, E2576-E2585. https://doi.org/10.1073/pnas.1401853111
- Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D, Gross CA, Block SM, Greenleaf WJ, Landick R, Weissman JS. 2014. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science. 344, 1042-1047. https://doi.org/10.1126/science.1251871
- Czyz A, Mooney RA, Iaconi A, Landick R. 2014. Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. MBio. 5, e00931. https://doi.org/10.1128/mBio.00931-14
- Zhang Y, Mooney RA, Grass JA, Sivaramakrishnan P, Herman C, Landick R, Wang JD. 2014. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol Cell. 53, 766-778. https://doi.org/10.1016/j.molcel.2014.02.005
- Kolb KE, Hein PP, Landick R. 2014. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. J Biol Chem. 289, 1151-1163. https://doi.org/10.1074/jbc.M113.521393
- Nayak D, Voss M, Windgassen T, Mooney RA, Landick R. 2013. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol Cell. 50, 882-893. https://doi.org/10.1016/j.molcel.2013.05.015
- Mooney RA, Landick R. 2013. Building a better stop sign: understanding the signals that terminate transcription. Nat Methods. 10, 618-619. https://doi.org/10.1038/nmeth.2527
- Weixlbaumer A, Leon K, Landick R, Darst SA. 2013. Structural basis of transcriptional pausing in bacteria. Cell. 152, 431-441. https://doi.org/10.1016/j.cell.2012.12.020
- Srivastava DB, Leon K, Osmundson J, Garner AL, Weiss LA, Westblade LF, Glickman MS, Landick R, Darst SA, Stallings CL, Campbell EA. 2013. Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci U S A. 110, 12619-12624. https://doi.org/10.1073/pnas.1308270110
- Chung D, Park D, Myers K, Grass JA, Kiley P, Landick R, Keles S. 2013. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-seq data. PLoS Comput Biol. 9, e1003246. https://doi.org/10.1371/journal.pcbi.1003246
- Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ. 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet. 9, e1003839. https://doi.org/10.1371/journal.pgen.1003839
- Myers KS, Yan H, Ong IM, Chung D, Liang K, Tran F, Keles S, Landick R, Kiley PJ. 2013. Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet. 9, e1003565. https://doi.org/10.1371/journal.pgen.1003565
- Decanio MS, Landick R, Haft RJ. 2013. The non-pathogenic Escherichia coli strain W secretes SslE via the virulence-associated type II secretion system beta. BMC Microbiol. 13, 130. https://doi.org/10.1186/1471-2180-13-130
- Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. 2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621-2633. https://doi.org/10.1101/gad.196741.112
- Koslover DJ, Fazal FM, Mooney RA, Landick R, Block SM. 2012. Binding and translocation of termination factor Rho studied at the single-molecule level. J Mol Biol. 423, 664-676. https://doi.org/10.1016/j.jmb.2012.07.027
- Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P. 2012. An alpha-helix to beta-barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell. 150, 291-303. https://doi.org/10.1016/j.cell.2012.05.042
- Palangat M, Larson M, Hu X, Gnatt A, Block S, Landick R. 2012. Efficient reconstitution of transcription elongation complexes for single-molecule studies of eukaryotic RNA polymerase II. Transcription. 3, 146-153. https://doi.org/10.4161/trns.20269
- Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. 2012. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A. 109, 6555-6560. https://doi.org/10.1073/pnas.1200939109
- Schwalbach MS, Keating DH, Tremaine M, Marner WD, Zhang Y, Bothfeld W, Higbee A, Grass JA, Cotten C, Reed JL, da Costa Sousa L, Jin M, Balan V, Ellinger J, Dale B, Kiley PJ, Landick R. 2012. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Appl Environ Microbiol. 78, 3442-3457. https://doi.org/10.1128/AEM.07329-11
- Palangat M, Grass JA, Langelier MF, Coulombe B, Landick R. 2011. The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation. Mol Cell Biol. 31, 3312-3325. https://doi.org/10.1128/MCB.05318-11
- Hein PP, Palangat M, Landick R. 2011. RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry. 50, 7002-7014. https://doi.org/10.1021/bi200437q
- Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. 2011. The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell. 43, 253-262. https://doi.org/10.1016/j.molcel.2011.05.026
- Peters JM, Vangeloff AD, Landick R. 2011. Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol. 412, 793-813. https://doi.org/10.1016/j.jmb.2011.03.036
- Hein PP, Landick R. 2010. The bridge helix coordinates movements of modules in RNA polymerase. BMC Biol. 8, 141. https://doi.org/10.1186/1741-7007-8-141
- Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R, Palsson BO. 2010. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci U S A. 107, 20500-20505. https://doi.org/10.1073/pnas.0911253107
- Opalka N, Brown J, Lane WJ, Twist KA, Landick R, Asturias FJ, Darst SA. 2010. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol. 8, e1000483. https://doi.org/10.1371/journal.pbio.1000483
- Ha KS, Toulokhonov I, Vassylyev DG, Landick R. 2010. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J Mol Biol. 401, 708-725. https://doi.org/10.1016/j.jmb.2010.06.036
- Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SM. 2010. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J Mol Biol. 399, 17-30. https://doi.org/10.1016/j.jmb.2010.03.051
- Zhang J, Palangat M, Landick R. 2010. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat Struct Mol Biol. 17, 99-104. https://doi.org/10.1073/pnas.0903846106
- Zhang J, Landick R. 2009. Substrate loading, nucleotide addition, and translocation by RNA polymerase. In RNA Polymerase as Molecular Motors (Buc H, Strick T, eds.), pp. 206-235, Royal Society of Chemistry, London.
- Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. 2009. Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci U S A. 106, 15406-15411. https://doi.org/10.1073/pnas.0903846106
- Mooney RA, Schweimer K, Rösch P, Gottesman M, Landick R. 2009. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol. 391, 341-358. https://doi.org/10.1016/j.jmb.2009.05.078
- Landick R. 2009. Transcriptional pausing without backtracking. Proc Natl Acad Sci U S A. 106, 8797-8798. https://doi.org/10.1073/pnas.0904373106
- Landick R. 2009. Functional divergence in the growing family of RNA polymerases. Structure. 17, 323-325. https://doi.org/10.1016/j.str.2009.02.006
- Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. 2009. Regulator trafficking on bacterial transcription units in vivo. Mol Cell. 33, 97-108. https://doi.org/10.1016/j.molcel.2008.12.021
- Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. 2009. Functional specialization of transcription elongation factors. EMBO J. 28, 112-122. https://doi.org/10.1038/emboj.2008.268
- Dufour Y, Landick R, Donohue T. 2008. Organization and evolution of the biological response to singlet oxygen stress. J Mol Biol. 383, 713-730. https://doi.org/10.1016/j.jmb.2008.08.017
- Larson MH, Greenleaf WJ, Landick R, Block SM. 2008. Applied force reveals mechanistic and energetic details of transcription termination. Cell. 132, 971-982. https://doi.org/10.1016/j.cell.2008.01.027
- Toulokhonov I, Zhang J, Palangat M, Landick R. 2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell. 27, 406-419. https://doi.org/10.1016/j.molcel.2007.06.008
- Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. 2007. Structural basis for substrate loading in bacterial RNA polymerase. Nature. 448, 163-168. https://doi.org/10.1038/nature05931
- Kyzer S, Ha K, Landick R, Palangat M. 2007. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J Biol Chem. 282, 19020-19028. https://doi.org/10.1074/jbc.M701483200
- Davis CA, Bingman CA, Landick R, Record MT Jr, Saecker RM. 2007. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 104, 7833-7388. https://doi.org/10.1073/pnas.0609888104
- Landick R. 2006. A long time in the making–the Nobel Prize for RNA polymerase. Cell. 127, 1087-1090. https://doi.org/10.1016/j.cell.2006.11.036
- Toulokhonov I, Landick R. 2006. The role of the lid element in transcription by E. coli RNA polymerase. J Mol Biol. 361, 644-658. https://doi.org/10.1016/j.jmb.2006.06.071
- Dalal RV, Larson MH, Neuman KC, Gelles J, Landick R, Block SM. 2006. Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. Mol Cell. 23, 231-239. https://doi.org/10.1016/j.molcel.2006.06.023
- Herbert KM, La Porta A, Wong BJ, Mooney RA, Neuman KC, Landick R, Block SM. 2006. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell. 125, 1083-1094. https://doi.org/10.1016/j.cell.2006.04.032
- Ederth J, Mooney RA, Isaakson L, Landick R. 2006. Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket. J Mol Biol. 365, 1163-1179. https://doi.org/10.1016/j.jmb.2005.11.080
- Mooney RA, Darst SA, Landick R. 2005. Sigma and RNA polymerase: an on-again, off-again relationship? Mol Cell. 20, 335-345. https://doi.org/10.1128/JB.01036-07
- Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. 2005. Direct observation of base-pair stepping by RNA polymerase. Nature. 438, 460-465. https://doi.org/10.1038/nature04268
- Palangat M, Renner DB, Price DH, Landick R. 2005. DSIF/NELF, a negative elongation factor for human RNA polymerase II, is a potent inhibitor of the anti-arrest factor TFIIS. Proc Natl Acad Sci U S A. 102, 15036-15042. https://doi.org/10.1073/pnas.0409405102
- Herring CD, Raffaelle M, Allen TE, Kanin EJ, Landick R, Ansari AZ, Palsson BO. 2005. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol. 187, 6166-6174. https://doi.org/10.1128/JB.187.17.6166-6174.2005
- Kyzer S, Zhang J, Landick R. 2005. Inhibition of RNA polymerase by streptolydigin: no cycling allowed. Cell. 122, 494-496. https://doi.org/10.1016/j.cell.2005.08.008
- Geszvain KM, Landick R. 2005. The structure of bacterial RNA polymerase. University of Wisconsin Dept. of Bacteriology. Web Site Edition, 12 pp.
- Geszvain KM, Landick R. 2005. The structure of RNA polymerase. In The Bacterial Chromosome (Higgins NP, ed.), pp. 283-296, American Society for Microbiology, Washington, D.C.
- Landick R. 2004. Active-site dynamics in RNA polymerases. Cell. 116, 351-353. https://doi.org/10.1016/S0092-8674(04)00121-7
- Palangat M, Hittinger CT, Landick R. 2004. Downstream DNA selectively affects a paused conformation of human RNA polymerase II. J Mol Biol. 341, 429-442. https://doi.org/10.1016/j.jmb.2004.06.009
- Artsimovitch I, Chu C, Lynch S, Landick R. 2003. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science. 302, 650-654. https://doi.org/10.1126/science.1087526
- Mooney RA, Landick R. 2003. Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal location. Genes Dev. 17, 2839-2851. https://doi.org/10.1101/gad.1142203
- Toulokhonov I, Landick R. 2003. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol Cell. 12, 1125-1136. https://doi.org/10.1016/S1097-2765(03)00439-8
- Tolic-Norrelykke SF, Engh AM, Landick R, Gelles J. 2004. Diversity in the rates of transcript elongation by single RNA polymerase molecules. J Biol Chem. 279, 3292-3299. https://doi.org/10.1074/jbc.M310290200
- Shaevitz JW, Abbondanzieri EA, Landick R, Block SM. 2003. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature. 426, 684-687. https://doi.org/10.1038/nature02191
- Neuman K, Abbondanzieri EA, Landick R, Gelles J, Block SM. 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell. 115, 437-447. https://doi.org/10.1016/S0092-8674(03)00845-6
- Wilson KA, Kalkum M, Ottesen J, Yuzunkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA. 2003. The structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc. 125, 12475-12483. https://doi.org/10.1021/ja036756q
- Santangelo T, Mooney RA, Landick R, Roberts JW. 2003. RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins. Genes Dev., 17, 1281-1292. https://doi.org/10.1101/gad.1082103
- Artsimovitch I, Svetlov V, Murakami KS, Landick R. 2003. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem. 278, 12344-12355. http://www.jbc.org/content/278/14/12344
- Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farrias RN, Salomon R, Severinov K. 2002. Mutations of bacterial RNA polymerase leading to resistance to microcin j25. J Biol Chem. 277, 50867-50875. http://www.jbc.org/content/277/52/50867
- Ederth J, Artsimovitch I, Isaksson L, Landick R. 2002. The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem. 277, 37456-37463. http://www.jbc.org/content/277/40/37456
- Artsimovitch I, Landick R. 2002. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell. 109, 193-203. Erratum in Cell. 110, 801. https://doi.org/10.1016/S0092-8674(02)00724-9
- Landick R. 2001. RNA polymerase clamps down. Cell. 105, 567-570. https://doi.org/10.1016/S0092-8674(01)00381-6
- Palangat M, Landick R. 2001. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in nonequilibrium pausing by human RNA polymerase II. J Mol Biol. 311, 265-282. https://doi.org/10.1006/jmbi.2001.4842
- Gruber TM, D. Markov D, Sharp MM, Young BA, Lui CZ, Zhong HJ, Artsimovitch I, Geszvain KM, Landick R, Severinov K, Gross CA. 2001. Binding of the initiation factor sigma70 to core RNA polymerase is a multistep process. Mol Cell. 8, 21-31. https://doi.org/10.1016/S1097-2765(01)00292-1
- Toulokhonov I, Artsimovitch I, Landick R. 2001. Allosteric control of RNA polymerase by an interaction site for nascent RNA hairpins. Science. 292, 730-733. https://doi.org/10.1126/science.1057738
- Artsimovitch I, Svetlov V, Anthony L, Burgess RR, Landick R. 2000. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol. 182, 6027-6035. Erratum in J Bacteriol. 183, 1504. https://doi.org/10.1128/JB.182.21.6027-6035.2000
- Anthony LC, Artsimovitch I, Svetlov V, Landick R, Burgess RR. 2000. Rapid purification of His(6)-tagged Bacillus subtilis core RNA polymerase. Protein Expr Purif. 19, 350-354. https://doi.org/10.1006/prep.2000.1272
- Artsimovitch I, Landick R. 2000. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A. 13, 7090-7095. https://doi.org/10.1073/pnas.97.13.7090
- Davenport RJ, Wuite GJL, Landick R, Bustamante C. 2000. Single molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science. 287, 2497-2500. https://doi.org/10.1126/science.287.5462.2497
- Opalka N, Mooney RA, Richter C, Severinov K, Landick R, Darst SA. 2000. Direct localization of a beta subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 97, 617-622. https://doi.org/10.1073/pnas.97.2.617
- Yin H, Artsimovitch I, Landick R, Gelles J. 1999. Non-equilibrium mechanism of transcription termination from observations of single RNA polymerase molecules. Proc Natl Acad Sci U S A. 96, 13124-13129. https://doi.org/10.1073/pnas.96.23.13124
- Keene RG, Mueller A, Landick R, London L. 1999. Transcriptional pause, arrest, and termination sites for RNA polymerase II in mammalian N- and c-myc genes. Nucleic Acids Res. 27, 3173-3182. https://doi.org/10.1093/nar/27.15.3173
- Pan T, Artsimovitch I, Landick R, Sosnick T. 1999. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc Natl Acad Sci U S A. 96, 9545-9550. https://doi.org/10.1073/pnas.96.17.9545
- Mooney RA, Landick R. 1999. RNA polymerase unveiled. Cell. 98, 687-690. https://doi.org/10.1016/S0092-8674(00)81483-X
- Landick R. 1999. Shifting RNA polymerase into overdrive. Science. 284, 598-599. https://doi.org/10.1126/science.284.5414.598
- Mooney RA, Artsimovitch I, Landick R. 1998. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol. 180, 3265-3275. https://jb.asm.org/content/180/13/3265
- Gelles J, Landick R. 1998. RNA polymerase as a molecular motor. Cell. 93, 13-16. https://doi.org/10.1016/S0092-8674(00)81140-X
- Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM. 1998. Force and velocity measured for single molecules of RNA polymerase. Science. 282, 902-907. https://doi.org/10.1126/science.282.5390.902
- Artsimovitch I, Landick R. 1998. Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release. Genes Dev. 12, 3110-3122. https://doi.org/10.1101/gad.12.19.3110
- Palangat M, Meier TI, Keene RG, Landick R. 1998. Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. Mol Cell. 1, 1033-1042. https://doi.org/10.1016/S1097-2765(00)80103-3
- Severinov K, Mooney RA, Darst SA, Landick R. 1997. Tethering of the large subunits of Escherichia coli RNA polymerase. J Biol Chem. 272, 24137-24140. http://www.jbc.org/content/272/39/24137
- Wang D, Severinov K, Landick R. 1997. Preferential interaction of the his pause RNA hairpin with RNA polymerase beta subunit residues 904-950 correlates with strong transcriptional pausing. Proc Natl Acad Sci U S A. 94, 8433-8438. https://doi.org/10.1073/pnas.94.16.8433
- Wang M, Yin H, Landick R, Gelles J, Block SM. 1997. Stretching DNA with optical tweezers. Biophys J. 72, 1335-1346. https://doi.org/10.1016/S0006-3495(97)78780-0
- Chan CL, Wang D, Landick R. 1997. Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3′ end spacing distinguishes pause and termination pathways. J Mol Biol. 268, 54-68. https://doi.org/10.1006/jmbi.1997.0935
- Chan CL, Landick R. 1997. Effects of neutral salts on transcript elongation and pausing. J Mol Biol. 268, 37-53. https://doi.org/10.1006/jmbi.1997.0934
- Wang D, Landick R. 1997. Nuclease cleavage of the upstream half of the nontemplate strand DNA in an Escherichia coli transcription elongation complex causes upstream translocation and transcriptional arrest. J Biol Chem. 272, 5989-5994. http://www.jbc.org/content/272/9/5989
- Landick R. 1997. RNA polymerase slides home: pause and termination site recognition. Cell. 88, 741-744. https://doi.org/10.1016/S0092-8674(00)81919-4
- Landick R, Roberts JW. 1996. The shrewd grasp of RNA polymerase. Science. 273, 202-203. https://doi.org/10.1126/science.273.5272.202
- Landick R, Wang D, Chan CL. 1996. Quantitative analysis of transcriptional pausing by RNA polymerase: his leader pause site as a paradigm. Methods Enzymol. 274, 334-353. https://doi.org/10.1016/S0076-6879(96)74029-6
- Landick R, Turnbough C Jr, Yanofsky C. 1996. Transcription attenuation. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd Edition (Neidhardt FC, Curtiss R 3rd, Ingraham JL, Low KR, B. Magasanik B, Schaechter M, Umbarger HE, eds.), pp. 1263-1286, American Society for Microbiology, Washington, D.C.
- Tavromina PL, Landick R, Gross CA. 1996. Isolation, purification, and in vitro characterization of recessive-lethal-mutant RNA polymerases from Escherichia coli. J Bacteriol. 178, 5263-5371. https://doi.org/10.1128/jb.178.17.5263-5271.1996
- Heisler LM, Feng G, Jin DJ, Gross CA, Landick R. 1996. Amino acid substitutions in the two largest subunits of Escherichia coli RNA polymerase that suppress a defective rho termination factor affect different parts of the transcription complex. J Biol Chem. 271, 14572-14583. http://www.jbc.org/content/271/24/14572
- Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J. 1995. Transcription against an applied force. Science. 270, 1653-1657. https://doi.org/10.1126/science.270.5242.1653
- Severinov K, Markov D, Severinova E, Nikiforov V, Landick R, Darst SA, Goldfarb A. 1995. Streptolydigin-resistant mutants in an evolutionarily conserved region of the beta’ subunit of Escherichia coli RNA polymerase. J Biol Chem. 270, 23926-23929. http://www.jbc.org/content/270/41/23926
- Severinov K, Mustaev A, Severinova E, Bass I, Landick R, Nikiforov V, Goldfarb A, Darst SA. 1995. Assembly of functional Escherichia coli RNA polymerase using beta-subunit fragments. Proc Natl Acad Sci U S A. 92, 4591-4595. https://doi.org/10.1073/pnas.92.10.4591
- Wang D, Meier TI, Chan CL, Feng G, Lee DN, Landick R. 1995. Discontinuous movements of DNA and RNA in E. coli RNA polymerase accompany formation of a paused transcription complex. Cell. 81, 341-350. https://doi.org/10.1016/0092-8674(95)90387-9
- Chan CL, Landick R. 1994. New perspectives on transcript elongation and termination by E. coli RNA polymerase. In Transcription: Mechanisms and Regulation (Conaway JW, Conaway RC, eds.), pp. 297-321, Raven Press, New York.
- Yin H, Landick R, Gelles J. 1994. Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys J. 67, 2468-2478. https://doi.org/10.1016/S0006-3495(94)80735-0
- Weilbaecher R, Hebron C, Feng G, Landick R. 1994. Termination-altering amino acid substitutions in the beta’ subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. Genes Dev. 8, 2913-2927. https://doi.org/10.1101/gad.8.23.2913
- Darst SA, Stebbins CE, Borukhov S, Orlova M, Feng G, Landick R, Goldfarb A. 1994. Crystallization of GreA, a transcript cleavage factor from Escherichia coli. J Mol Biol. 242, 582-585. https://doi.org/10.1006/jmbi.1994.1603
- Lee DN, Feng G, Landick R. 1994. GreA-induced transcript cleavage is accompanied by reverse translocation to a new transcription complex conformation. J Biol Chem. 269, 22295-22303. http://www.jbc.org/content/269/35/22295
- Feng G, Lee DN, Wang D, Chan CL, Landick R. 1994. GreA-induced transcript cleavage in transcription complexes containing E. coli RNA polymerase is controlled by multiple factors, including nascent transcript location and structure. J Biol Chem. 269, 22282-22294. http://www.jbc.org/content/269/35/22282
- Heisler LM, Suzuki H, Landick R, Gross CA. 1993. Four contiguous amino acids define the target for streptolydigin resistance in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem. 268, 25369-25375. http://www.jbc.org/content/270/41/23926
- Chan CL, Landick R. 1993. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J Mol Biol. 233, 25-42. https://doi.org/10.1006/jmbi.1993.1482
- Landick R, Turnbough C Jr. 1992. Transcriptional attenuation. In Transcriptional Regulation (McKnight SL, Yamamoto KR, eds.), pp. 407-446, Cold Spring Harbor Press, Cold Spring Harbor, New York. https://cshmonographs.org/index.php/monographs/article/view/3509
- Lee DN, Landick R. 1992. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol. 228, 759-777. https://doi.org/10.1016/0022-2836(92)90862-E
- London L, Keene RG, Landick R. 1991. Analysis of premature termination in c-myc during transcription by RNA polymerase II in a HeLa nuclear extract. Mol Cell Biol. 11, 4599-4615. https://doi.org/10.1128/MCB.11.9.4599
- Schafer D, Gelles J, Sheetz M, Landick R. 1991. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature. 352, 444-448. https://doi.org/10.1038/352444a0
- Landick R, Yanofsky C, Phung L, Choo K. 1990. Replacement of the Escherichia coli trp attenuator control codons alters operon expression. J Mol Biol. 216, 25-37. https://doi.org/10.1016/S0022-2836(05)80058-0
- Landick R, Stewart J, Lee DN. 1990. Amino acid changes in conserved regions of the beta-subunit of Escherichia coli RNA polymerase alter transcription pausing and termination. Genes Dev. 4, 1623-1636. https://doi.org/10.1101/gad.4.9.1623
- Lee DN, Phung L, Stewart J, Landick R. 1990. Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. J Biol Chem. 265, 15145-15153. http://www.jbc.org/content/265/25/15145
- Adams MD, Wagner LM, Graddis TM, Landick R, Antonucci TK, Gibson AL, Oxender DL. 1990. Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli. J Biol Chem. 265, 11436-11443. http://www.jbc.org/content/265/20/11436
- Landick R, Colwell A, Stewart J. 1990. Insertional mutagenesis of a plasmid-borne Escherichia coli rpoB gene reveals alterations that inhibit beta-subunit assembly into RNA polymerase. J Bacteriol. 172, 2844-2854. https://doi.org/10.1128/jb.172.6.2844-2854.1990
- Chan C, Landick R. 1989. The S. typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site: mechanistic implications of the effect on pausing of altered RNA hairpins. J Biol Chem. 264, 20796-20804. http://www.jbc.org/content/264/34/20796
- Ti-zhi S, Copeland BR, Landick R, Graddis JT, Oxender DL. 1988. Export of hybrid proteins of leucine-specific binding protein and trypotophan synthetase in Escherichia coli. Acta Biochim Biophys Sinica. 20, 364-370.
- Landick RC. 1987. The role of the paused transcription complex in trp operon attenuation. In RNA polymerase and the Regulation of Transcription. A Steenbock Symposium (Reznikoff WS, Burgess RR, Dahlberg JE, Gross CA, Record MT Jr, Wickens MP, eds.), pp. 441-444, Elsevier, New York.
- Landick R, Yanofsky C. 1987. Transcription attenuation. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt FC, Ingraham JL, Low KR, Magasanik B, Schaechter M, Umbarger HE, eds.), pp. 1276-1301, American Society for Microbiology, Washington, D.C.
- Landick R, Yanofsky C. 1987. Isolation and structural analysis of the Escherichia coli trp leader paused transcription complex. J Mol Biol. 196, 363-377. https://doi.org/10.1016/0022-2836(87)90697-8
- Landick R, Carey J, Yanofsky C. 1987. Detection of transcription-pausing in vivo in the trp operon leader region. Proc Natl Acad Sci U S A. 84, 1507-1511. https://doi.org/10.1073/pnas.84.6.1507
- Nazos PM, Antonucci TK, Landick R, Oxender DL. 1986. Cloning and characterization of livH, the structural gene encoding a membrane component of the leucine transport system in Escherichia coli. J Bacteriol. 166, 565-573. https://doi.org/10.1128/jb.166.2.565-573.1986
- Stewart V, Landick R, Yanofsky C. 1986. Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12. J Bacteriol. 166, 217-233. https://doi.org/10.1128/jb.166.1.217-223.1986
- Landick R, Oxender DL, Ames GFL. 1985. Bacterial amino acid transport systems. In The Enzymes of Biological Membranes, 2nd Edition, Vol. 3 (Martonosi A, ed.), pp. 577-615, Plenum Press, New York.
- Antonucci TK, Landick R, Oxender DL. 1985. The leucine binding proteins of Escherichia coli as models for studying the relationships between protein structure and function. J. Cell. Biochem. 29, 209-216. https://doi.org/10.1002/jcb.240290305
- Landick R, Carey J, Yanofsky C. 1985. Translation activates the paused transcription complex and restores transcription of the trp operon leader region. Proc Natl Acad Sci U S A. 82, 4663-4667. https://doi.org/10.1073/pnas.82.14.4663
- Landick R, Oxender DL. 1985. The complete nucleotide sequences of the E. coli LIV-BP and LS-BP genes: implications for the mechanism of the LIV-I transport system. J Biol Chem. 260, 8257-8261. http://www.jbc.org/content/260/14/8257
- Landick R. 1984. Regulation of LIV-I transport system gene expression. In Microbiology 1984 (L. Leive and D. Schlessinger, eds.), pp. 71-74, American Society for Microbiology, Washington, D.C.
- Oxender DL, Landick R, Nazos P, Copeland BR. 1984. The role of membrane potential in protein folding and secretion in Escherichia coli. In Microbiology 1984 (Leive L, Schlessinger D, eds.), pp. 4-7, American Society for Microbiology, Washington, D.C.
- Nazos PM, Su TZ, Landick R, Oxender DL. 1984. Branched-chain amino acid transport in Escherichia coli. In Microbiology 1984 (Leive L, Schlessinger D, eds.) pp. 24-28, American Society for Microbiology, Washington, D.C.
- Copeland BR, Landick R, Nazos PM, Oxender DL. 1984. Role of membrane potential in protein folding and domain formation during secretion in Escherichia coli. In Protein Transport and Secretion (Oxender D, ed.), pp. 279-290, Alan Liss Inc., New York.
- Landick R, Duncan JR, Copeland BR, Nazos PM, Oxender DL. 1984. Secretion and degradation of mutant leucine-specific binding protein molecules containing C-terminal deletions. In Protein Transport and Secretion (Oxender D, ed.), pp. 265-278, Alan Liss Inc., New York.
- Landick R, Maguire D, Lutter LC. 1984. Optimization of polyacrylamide gel electrophoresis conditions used for sequencing mixed oligodeoxyribonucleotides. DNA. 3, 414-419. https://doi.org/10.1089/dna.1984.3.413
- Landick R, Vaughn V, Lau ET, VanBogelen RA, Erickson JW, Neidhardt FC. 1984. Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein may be a transcription factor. Cell. 38, 175-182. http://doi.org/10.1016/0092-8674(84)90538-5
- Landick R, Yanofsky C. 1984. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J Biol Chem. 259, 11550-11555. http://www.jbc.org/content/259/18/11550
- Copeland BR, Landick R, Nazos PM, Oxender DL. 1984. Role of membrane potential in protein folding and domain formation during secretion in Escherichia coli. J Cell Biochem. 24, 345-356. https://doi.org/10.1002/jcb.240240405
- Landick R, Duncan JR, Copeland BR, Nazos PM, Oxender DL. 1984. Secretion and degradation of mutant leucine-specific binding protein molecules containing C-terminal deletions. J Cell Biochem. 24, 331-344. http://doi.org/10.1002/jcb.240240404
- Landick R, Daniels CJ, Oxender DL. 1983. Influence of membrane potential on the insertion and transport of proteins in bacterial membranes. In Methods in Enzymology, Vol. 97, Biomembranes, Part K, Membrane Biogenesis: Assembly and Targeting (Prokaryotes, Mitochondria, and Chloroplasts) (Fleischer S, Fleischer B, eds.), pp. 146-153, Academic Press, New York.
- Daniels CJ, Anderson JJ, Landick R, Oxender DL. 1981. The in vitro synthesis and processing of the branched-chain amino acid binding proteins. J Supramol Struct. 14, 305-311. https://doi.org/10.1002/jss.400140305
- Landick R, Anderson JJ, Mayo MM, Gunsalus RP, Mavromara P, Daniels CJ, Oxender DL. 1981. Regulation of the high-affinity leucine transport genes of Escherichia coli. J Supramol Struct. 14, 527-537. https://doi.org/10.1002/jss.400140410
- Landick R, Oxender DL. 1982. Bacterial periplasmic binding proteins. In Membranes and Transport: A Critical Review, Vol. 2 (Martonosi A, ed.), pp. 81-91, Plenum Press, New York.
- Landick R, Anderson JJ, Mayo MM, Gunsalus RP, Mavromara P, Daniels CJ, Oxender DL. 1981. Regulation of the high-affinity leucine transport genes of Escherichia coli. In Progress in Clinical and Biochemical Research, Membrane Transport, and Neuroreceptors (Blume A, Diamond I, Oxender D, Fox CF, eds.), pp. 343-353, Alan Liss Inc., New York.
- Daniels CJ, Anderson JJ, Landick R, Oxender DL. 1981. The in vitro synthesis and processing of the branched-chain amino acid binding proteins. In Progress in Clinical and Biochemical Research, Membrane Transport, and Neuroreceptors (Blume A, Diamond I, Oxender D, Fox CF, eds.), pp. 319-325, Alan Liss Inc., New York. [PDF]
- Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Yanofsky C. 1980. Amino-terminal sequence and processing of the precursor of the leucine-specific binding protein, and evidence for conformational differences between the precursor and mature form. Proc Natl Acad Sci U S A. 77, 2005-2009. https://doi.org/10.1073/pnas.77.4.2005 [PDF]
- Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Selker E, Yanofsky C. 1980. Structural and functional analysis of cloned DNA containing genes responsible for branched-chain amino acid transport in Escherichia coli. Proc Natl Acad Sci U S A. 77, 1412-1416. https://doi.org/10.1073/pnas.77.3.1412 [PDF]
- Marino JP, Landick RC. 1975. 1-Phenylthiocyclopropyl-triphenylphosphonium fluoborate: a new synthon for cyclopentanone synthesis. Tetrahedron Lett. 51, 4531-4534. https://doi.org/10.1016/S0040-4039(00)91063-3 [PDF]