All Publications

Below is a full list of publications from the Landick lab, including original research articles, literature reviews, protocols, and book chapters. All links will open in a new tab.

Landick publications search on PubMed (link opens in new tab)

  1. Liu Y, Ghosh IN, Martien JI, Zhang Y, Amador-Noguez D, Landick R. 2020. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metab Eng. In press.
  2. Harden TT, Herlambang KS, Chamberlain M, Lalanne JB, Wells CD, Li GW, Landick R, Hochschild A, Kondev J, Gelles J. 2020. Alternative transcription cycle for bacterial RNA polymerase. Nat Commun. 11, 448. https://doi.org/10.1038/s41467-019-14208-9
  3. Zhang Y, Vera JM, Xie D, Serate J, Pohlmann E, Russell JD, Hebert AS, Coon JJ, Sato TK, Landick R. 2019. Multiomic fermentation using chemically defined synthetic hydrolyzates revealed multiple effects of lignocellulose-derived inhibitors on cell physiology and xylose utilization in Zymomonas mobilis. Front Microbiol. 10, 2596. https://doi.org/10.3389/fmicb.2019.02596
  4. Lal PB, Wells FM, Lyu Y, Ghosh IN, Landick R, Kiley PJ. 2019. A markerless method for genome engineering in Zymomonas mobilis ZM4. Front Microbiol. 10, 2216. https://doi.org/10.3389/fmicb.2019.02216
  5. Kim J, Tremaine M, Grass JA, Purdy HM, Landick R, Kiley PJ, Reed JL. 2019. Systems metabolic engineering of Escherichia coli improves coconversion of lignocellulose-derived sugars. Biotechnol J. 14, e1800441. https://doi.org/10.1002/biot.201800441
  6. Shen BA, Landick R. 2019. Transcription of bacterial chromatin. J Mol Biol. 431, 4040-4066. https://doi.org/10.1016/j.jmb.2019.05.041
  7. Kang JY, Mishanina TV, Landick R, Darst SA. 2019. Mechanisms of transcriptional pausing in bacteria. J Mol Biol. 431, 4007-4029. https://doi.org/10.1016/j.jmb.2019.07.017
  8. Liu Y, Landick R, Raman S. 2019. A regulatory NADH/NAD+ redox biosensor for bacteria. ACS Synth Biol. 8, 264-273. https://doi.org/10.1021/acssynbio.8b00485
  9. Stumper SK, Ravi H, Friedman LJ, Mooney RA, Corrêa IR, Gershenson A, Landick R, Gelles J. 2019. Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription. eLife. 8, e40576. https://doi.org/10.7554/eLife.40576
  10. Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. 2019. RNA polymerase clamp movement aids dissociation from DNA but is not required for RNA release at intrinsic terminators. J Mol Biol. 431, 696-713. https://doi.org/10.1016/j.jmb.2019.01.003
  11. Saba J, Chua XY, Mishanina TV, Nayak D, Windgassen TA, Mooney RA, Landick R. 2019. The elemental mechanism of transcriptional pausing. eLife. 8, e40981. https://doi.org/10.7554/eLife.40981
  12. Ghosh IN, Martien J, Hebert AS, Zhang Y, Coon JJ, Amador-Noguez D, Landick R. 2019. OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate. Metab Eng. 52, 324-340. https://doi.org/10.1016/j.ymben.2018.12.008
  13. Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM. 2018. Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol Cell. 71, 911-922.e4. https://doi.org/10.1016/j.molcel.2018.07.014
  14. Boudreau BA, Kotlajich MV, Landick R. 2018. In vitro transcription assay to quantify effects of H-NS filaments on RNA chain elongation by RNA polymerase. In: Dame R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837, pp. 351-386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_18
  15. Higgins DA, Young MKM, Tremaine M, Sardi M, Fletcher JM, Agnew M, Liu L, Dickinson Q, Peris D, Wrobel RL, Hittinger CT, Gasch AP, Singer SW, Simmons BA, Landick R, Thelen MP, Sato TK. 2018. Natural variation in the multidrug efflux pump SGE1 underlies ionic liquid tolerance in yeast. Genetics. 210, 219-234. https://doi.org/10.1534/genetics.118.301161
  16. Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. 2018. Structural basis for transcript elongation control by NusG family universal regulators. Cell. 173, 1650-1662.e14. https://doi.org/10.1016/j.cell.2018.05.017
  17. Yang S, Vera JM, Grass J, Savvakis G, Moskvin OV, Yang Y, McIlwain SJ, Lyu Y, Zinonos I, Hebert AS, Coon JJ, Bates DM, Sato TK, Brown SD, Himmel ME, Zhang M, Landick R, Pappas KM, Zhang Y. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol Biofuels. 11, 125. https://doi.org/10.1186/s13068-018-1116-x
  18. Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. 2018. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res. 46, 5525-5546. https://doi.org/10.1093/nar/gky265
  19. Helmling C, Klotzner DP, Sochor F, Mooney RA, Wacker A, Landick R, Furtig B, Heckel A, Schwalbe H. 2018. Life times of metastable states guide regulatory signaling in transcriptional riboswitches. Nat Commun. 9, 944. https://doi.org/10.1038/s41467-018-03375-w
  20. Kang J, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. 2018. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Mol Cell. 69, 802-815.e1. https://doi.org/10.1016/j.molcel.2018.01.018
  21. Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. 2018. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. Elife. 7, e34823. https://doi.org/10.7554/eLife.34823
  22. Bottoms S, Dickinson Q, McGee M, Hinchman L, Higbee A, Hebert A, Serate J, Xie D, Zhang Y, Coon JJ, Myers CL, Landick R, Piotrowski JS. 2018. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast. Microb Cell Fact. 17, 5. https://doi.org/10.1186/s12934-017-0848-9
  23. Ray-Soni A, Mooney RA, Landick R. 2017. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proc Natl Acad Sci U S A. 114, E9233-E9242. https://doi.org/10.1073/pnas.1706247114
  24. Harwig A, Landick R, Berkhout B. 2017. The battle of RNA synthesis: virus versus host. Viruses. 9, E309. https://doi.org/10.3390/v9100309
  25. Welch R, Chung D, Grass J, Landick R, Keles S. 2017. Data exploration, quality control and statistical analysis of ChIP-exo/nexus experiments. Nucleic Acids Res. 45, e145. https://doi.org/10.1093/nar/gkx594
  26. Mishanina TV, Palo MZ, Nayak D, Mooney RA, Landick R. 2017. Trigger loop of RNA polymerase is a positional, not acid-base, catalyst for both transcription and proofreading. Proc Natl Acad Sci U S A. 114, E5103-E5112. https://doi.org/10.1073/pnas.1702383114
  27. Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. 2017. RNA polymerase motions during promoter melting. Science. 356, 863-866. https://doi.org/10.1126/science.aam7858
  28. Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm S, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Furtig B, Wohnert J, Schwalbe H. 2017. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. Elife. 6, e21297. https://doi.org/10.7554/eLife.21297
  29. Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P. 2017. Architecture of a transcribing-translating expressome. Science. 356, 194-197. https://doi.org/10.1126/science.aal3059
  30. Tetone LE, Friedman LJ, Osborne ML, Ravi H, Kyzer S, Stumper SK, Mooney RA, Landick R, Gelles J. 2017. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc Natl Acad Sci U S A. 114, E1081-E1090. https://doi.org/10.1073/pnas.1616525114
  31. Sato TK, Tremaine M, Parreiras LS, Hebert AS, Myers KS, Higbee AJ, Sardi M, McIlwain SJ, Ong IM, Breuer RJ, Narasimhan RA, McGee MA, Dickinson Q, La Reau A, Xie D, Tian M, Piotrowski JS, Reed JL, Zhang Y, Coon JJ, Hittinger CT, Gasch AP, Landick R. 2016. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genet. 12, e1006372. Erratum published in PLoS Genet., 12, e1006447. https://doi.org/10.1371/journal.pgen.1006372
  32. Ghosh IN, Landick R. 2016. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis. ACS Synth Biol. 5, 1519-1534. https://doi.org/10.1021/acssynbio.6b00121
  33. McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers K, Riley NM, Buzzell A, Parreiras LS, Ong IM, Landick R, Coon JJ, Gasch AP, Sato TK, Hittinger CT. 2016. Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research. G3 (Bethesda). 6, 1757-1766. https://doi.org/10.1534/g3.116.029389
  34. Ray-Soni A, Bellecourt MJ, Landick R. 2016. Mechanisms of bacterial transcription termination: all good things must end. Annu Rev Biochem. 85, 319-347. https://doi.org/10.1146/annurev-biochem-060815-014844
  35. Zhang J, Landick R. 2016. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem Sci. 41, 293-310. https://doi.org/10.1016/j.tibs.2015.12.009
  36. Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS. 2016. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Fact. 15, 17. https://doi.org/10.1186/s12934-016-0417-7
  37. Ronayne EA, Wan YC, Boudreau BA, Landick R, Cox MM. 2016. P1 ref endonuclease: a molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genet. 12, e1005797. https://doi.org/10.1371/journal.pgen.1005797
  38. Harden TT, Wells CD, Friedman LJ, Landick R, Hochschild A, Kondev J, Gelles J. 2016. Bacterial RNA polymerase can retain sigma70 throughout transcription. Proc Natl Acad Sci U S A. 113, 602-607. https://doi.org/10.1073/pnas.1513899113
  39. Landick R, Wade JT, Grainger DC. 2015. H-NS and RNA polymerase: a love-hate relationship? Curr Opin Microbiol. 24, 53-59. https://doi.org/10.1016/j.mib.2015.01.009
  40. Serate J, Xie D, Pohlmann E, Donald C Jr, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. 2015. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. Biotechnol Biofuels. 8, 180. https://doi.org/10.1186/s13068-015-0356-2
  41. Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. 2015. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife. 4, e08504. https://doi.org/10.7554/eLife.08504
  42. Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, Smith DL, Higbee AJ, Ulbrich A, Coon JJ, Deshpande R, Bukhman YV, McIlwain S, Ong IM, Myers CL, Boone C, Landick R, Ralph J, Kabbage M, Ohya Y. 2015. Plant-derived antifungal agent poacic acid targets beta-1,3-glucan. Proc Natl Acad Sci U S A. 112, E1490-1497. https://doi.org/10.1073/pnas.1410400112
  43. Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst SA. 2015. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci U S A. 112, E4178-E4187. https://doi.org/10.1073/pnas.1502368112
  44. Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. 2015. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife. 4, e04970. https://doi.org/10.7554/eLife.04970
  45. Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. 2014. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Res. 42, 12707-12721. https://doi.org/10.1093/nar/gku997
  46. Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA, Mooney RA, Landick R. 2014. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat Struct Mol Biol. 21, 794-802. https://doi.org/10.1038/nsmb.2867
  47. Haft RJ, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A. 111, E2576-E2585. https://doi.org/10.1073/pnas.1401853111
  48. Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D, Gross CA, Block SM, Greenleaf WJ, Landick R, Weissman JS. 2014. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science. 344, 1042-1047. https://doi.org/10.1126/science.1251871
  49. Czyz A, Mooney RA, Iaconi A, Landick R. 2014. Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. MBio. 5, e00931. https://doi.org/10.1128/mBio.00931-14
  50. Zhang Y, Mooney RA, Grass JA, Sivaramakrishnan P, Herman C, Landick R, Wang JD. 2014. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol Cell. 53, 766-778. https://doi.org/10.1016/j.molcel.2014.02.005
  51. Kolb KE, Hein PP, Landick R. 2014. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. J Biol Chem. 289, 1151-1163. https://doi.org/10.1074/jbc.M113.521393
  52. Nayak D, Voss M, Windgassen T, Mooney RA, Landick R. 2013. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol Cell. 50, 882-893. https://doi.org/10.1016/j.molcel.2013.05.015
  53. Mooney RA, Landick R. 2013. Building a better stop sign: understanding the signals that terminate transcription. Nat Methods. 10, 618-619. https://doi.org/10.1038/nmeth.2527
  54. Weixlbaumer A, Leon K, Landick R, Darst SA. 2013. Structural basis of transcriptional pausing in bacteria. Cell. 152, 431-441. https://doi.org/10.1016/j.cell.2012.12.020
  55. Srivastava DB, Leon K, Osmundson J, Garner AL, Weiss LA, Westblade LF, Glickman MS, Landick R, Darst SA, Stallings CL, Campbell EA. 2013. Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci U S A. 110, 12619-12624. https://doi.org/10.1073/pnas.1308270110
  56. Chung D, Park D, Myers K, Grass JA, Kiley P, Landick R, Keles S. 2013. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-seq data. PLoS Comput Biol. 9, e1003246. https://doi.org/10.1371/journal.pcbi.1003246
  57. Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ. 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet. 9, e1003839. https://doi.org/10.1371/journal.pgen.1003839
  58. Myers KS, Yan H, Ong IM, Chung D, Liang K, Tran F, Keles S, Landick R, Kiley PJ. 2013. Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet. 9, e1003565. https://doi.org/10.1371/journal.pgen.1003565
  59. Decanio MS, Landick R, Haft RJ. 2013. The non-pathogenic Escherichia coli strain W secretes SslE via the virulence-associated type II secretion system beta. BMC Microbiol. 13, 130. https://doi.org/10.1186/1471-2180-13-130
  60. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. 2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621-2633. https://doi.org/10.1101/gad.196741.112
  61. Koslover DJ, Fazal FM, Mooney RA, Landick R, Block SM. 2012. Binding and translocation of termination factor Rho studied at the single-molecule level. J Mol Biol. 423, 664-676. https://doi.org/10.1016/j.jmb.2012.07.027
  62. Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P. 2012. An alpha-helix to beta-barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell. 150, 291-303. https://doi.org/10.1016/j.cell.2012.05.042
  63. Palangat M, Larson M, Hu X, Gnatt A, Block S, Landick R. 2012. Efficient reconstitution of transcription elongation complexes for single-molecule studies of eukaryotic RNA polymerase II. Transcription. 3, 146-153. https://doi.org/10.4161/trns.20269
  64. Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. 2012. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A. 109, 6555-6560. https://doi.org/10.1073/pnas.1200939109
  65. Schwalbach MS, Keating DH, Tremaine M, Marner WD, Zhang Y, Bothfeld W, Higbee A, Grass JA, Cotten C, Reed JL, da Costa Sousa L, Jin M, Balan V, Ellinger J, Dale B, Kiley PJ, Landick R. 2012. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Appl Environ Microbiol. 78, 3442-3457. https://doi.org/10.1128/AEM.07329-11
  66. Palangat M, Grass JA, Langelier MF, Coulombe B, Landick R. 2011. The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation. Mol Cell Biol. 31, 3312-3325. https://doi.org/10.1128/MCB.05318-11
  67. Hein PP, Palangat M, Landick R. 2011. RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry. 50, 7002-7014. https://doi.org/10.1021/bi200437q
  68. Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. 2011. The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell. 43, 253-262. https://doi.org/10.1016/j.molcel.2011.05.026
  69. Peters JM, Vangeloff AD, Landick R. 2011. Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol. 412, 793-813. https://doi.org/10.1016/j.jmb.2011.03.036
  70. Hein PP, Landick R. 2010. The bridge helix coordinates movements of modules in RNA polymerase. BMC Biol. 8, 141. https://doi.org/10.1186/1741-7007-8-141
  71. Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R, Palsson BO. 2010. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci U S A. 107, 20500-20505. https://doi.org/10.1073/pnas.0911253107
  72. Opalka N, Brown J, Lane WJ, Twist KA, Landick R, Asturias FJ, Darst SA. 2010. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol. 8, e1000483. https://doi.org/10.1371/journal.pbio.1000483
  73. Ha KS, Toulokhonov I, Vassylyev DG, Landick R. 2010. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J Mol Biol. 401, 708-725. https://doi.org/10.1016/j.jmb.2010.06.036
  74. Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SM. 2010. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J Mol Biol. 399, 17-30. https://doi.org/10.1016/j.jmb.2010.03.051
  75. Zhang J, Palangat M, Landick R. 2010. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat Struct Mol Biol. 17, 99-104. https://doi.org/10.1073/pnas.0903846106
  76. Zhang J, Landick R. 2009. Substrate loading, nucleotide addition, and translocation by RNA polymerase. In RNA Polymerase as Molecular Motors (Buc H, Strick T, eds.), pp. 206-235, Royal Society of Chemistry, London.
  77. Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. 2009. Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci U S A. 106, 15406-15411. https://doi.org/10.1073/pnas.0903846106
  78. Mooney RA, Schweimer K, Rösch P, Gottesman M, Landick R. 2009. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol. 391, 341-358. https://doi.org/10.1016/j.jmb.2009.05.078
  79. Landick R. 2009. Transcriptional pausing without backtracking. Proc Natl Acad Sci U S A. 106, 8797-8798. https://doi.org/10.1073/pnas.0904373106
  80. Landick R. 2009. Functional divergence in the growing family of RNA polymerases. Structure. 17, 323-325. https://doi.org/10.1016/j.str.2009.02.006
  81. Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. 2009. Regulator trafficking on bacterial transcription units in vivo. Mol Cell. 33, 97-108. https://doi.org/10.1016/j.molcel.2008.12.021
  82. Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. 2009. Functional specialization of transcription elongation factors. EMBO J. 28, 112-122. https://doi.org/10.1038/emboj.2008.268
  83. Dufour Y, Landick R, Donohue T. 2008. Organization and evolution of the biological response to singlet oxygen stress. J Mol Biol. 383, 713-730. https://doi.org/10.1016/j.jmb.2008.08.017
  84. Larson MH, Greenleaf WJ, Landick R, Block SM. 2008. Applied force reveals mechanistic and energetic details of transcription termination. Cell. 132, 971-982. https://doi.org/10.1016/j.cell.2008.01.027
  85. Toulokhonov I, Zhang J, Palangat M, Landick R. 2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell. 27, 406-419. https://doi.org/10.1016/j.molcel.2007.06.008
  86. Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. 2007. Structural basis for substrate loading in bacterial RNA polymerase. Nature. 448, 163-168. https://doi.org/10.1038/nature05931
  87. Kyzer S, Ha K, Landick R, Palangat M. 2007. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J Biol Chem. 282, 19020-19028. https://doi.org/10.1074/jbc.M701483200
  88. Davis CA, Bingman CA, Landick R, Record MT Jr, Saecker RM. 2007. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 104, 7833-7388. https://doi.org/10.1073/pnas.0609888104
  89. Landick R. 2006. A long time in the making–the Nobel Prize for RNA polymerase. Cell. 127, 1087-1090. https://doi.org/10.1016/j.cell.2006.11.036
  90. Toulokhonov I, Landick R. 2006. The role of the lid element in transcription by E. coli RNA polymerase. J Mol Biol. 361, 644-658. https://doi.org/10.1016/j.jmb.2006.06.071
  91. Dalal RV, Larson MH, Neuman KC, Gelles J, Landick R, Block SM. 2006. Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. Mol Cell. 23, 231-239. https://doi.org/10.1016/j.molcel.2006.06.023
  92. Herbert KM, La Porta A, Wong BJ, Mooney RA, Neuman KC, Landick R, Block SM. 2006. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell. 125, 1083-1094. https://doi.org/10.1016/j.cell.2006.04.032
  93. Ederth J, Mooney RA, Isaakson L, Landick R. 2006. Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket. J Mol Biol. 365, 1163-1179. https://doi.org/10.1016/j.jmb.2005.11.080
  94. Mooney RA, Darst SA, Landick R. 2005. Sigma and RNA polymerase: an on-again, off-again relationship? Mol Cell. 20, 335-345. https://doi.org/10.1128/JB.01036-07
  95. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. 2005. Direct observation of base-pair stepping by RNA polymerase. Nature. 438, 460-465. https://doi.org/10.1038/nature04268
  96. Palangat M, Renner DB, Price DH, Landick R. 2005. DSIF/NELF, a negative elongation factor for human RNA polymerase II, is a potent inhibitor of the anti-arrest factor TFIIS. Proc Natl Acad Sci U S A. 102, 15036-15042. https://doi.org/10.1073/pnas.0409405102
  97. Herring CD, Raffaelle M, Allen TE, Kanin EJ, Landick R, Ansari AZ, Palsson BO. 2005. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol. 187, 6166-6174. https://doi.org/10.1128/JB.187.17.6166-6174.2005
  98. Kyzer S, Zhang J, Landick R. 2005. Inhibition of RNA polymerase by streptolydigin: no cycling allowed. Cell. 122, 494-496. https://doi.org/10.1016/j.cell.2005.08.008
  99. Geszvain KM, Landick R. 2005. The structure of bacterial RNA polymerase. University of Wisconsin Dept. of Bacteriology. Web Site Edition, 12 pp.
  100. Geszvain KM, Landick R. 2005. The structure of RNA polymerase. In The Bacterial Chromosome (Higgins NP, ed.), pp. 283-296, American Society for Microbiology, Washington, D.C.
  101. Landick R. 2004. Active-site dynamics in RNA polymerases. Cell. 116, 351-353. https://doi.org/10.1016/S0092-8674(04)00121-7
  102. Palangat M, Hittinger CT, Landick R. 2004. Downstream DNA selectively affects a paused conformation of human RNA polymerase II. J Mol Biol. 341, 429-442. https://doi.org/10.1016/j.jmb.2004.06.009
  103. Artsimovitch I, Chu C, Lynch S, Landick R. 2003. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science. 302, 650-654. https://doi.org/10.1126/science.1087526
  104. Mooney RA, Landick R. 2003. Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal location. Genes Dev. 17, 2839-2851. https://doi.org/10.1101/gad.1142203
  105. Toulokhonov I, Landick R. 2003. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol Cell. 12, 1125-1136. https://doi.org/10.1016/S1097-2765(03)00439-8
  106. Tolic-Norrelykke SF, Engh AM, Landick R, Gelles J. 2004. Diversity in the rates of transcript elongation by single RNA polymerase molecules. J Biol Chem. 279, 3292-3299. https://doi.org/10.1074/jbc.M310290200
  107. Shaevitz JW, Abbondanzieri EA, Landick R, Block SM. 2003. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature. 426, 684-687. https://doi.org/10.1038/nature02191
  108. Neuman K, Abbondanzieri EA, Landick R, Gelles J, Block SM. 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell. 115, 437-447. https://doi.org/10.1016/S0092-8674(03)00845-6
  109. Wilson KA, Kalkum M, Ottesen J, Yuzunkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA. 2003. The structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc. 125, 12475-12483. https://doi.org/10.1021/ja036756q
  110. Santangelo T, Mooney RA, Landick R, Roberts JW. 2003. RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins. Genes Dev., 17, 1281-1292. https://doi.org/10.1101/gad.1082103
  111. Artsimovitch I, Svetlov V, Murakami KS, Landick R. 2003. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem. 278, 12344-12355. http://www.jbc.org/content/278/14/12344
  112. Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farrias RN, Salomon R, Severinov K. 2002. Mutations of bacterial RNA polymerase leading to resistance to microcin j25. J Biol Chem. 277, 50867-50875. http://www.jbc.org/content/277/52/50867
  113. Ederth J, Artsimovitch I, Isaksson L, Landick R. 2002. The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem. 277, 37456-37463. http://www.jbc.org/content/277/40/37456
  114. Artsimovitch I, Landick R. 2002. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell. 109, 193-203. Erratum in Cell. 110, 801. https://doi.org/10.1016/S0092-8674(02)00724-9
  115. Landick R. 2001. RNA polymerase clamps down. Cell. 105, 567-570. https://doi.org/10.1016/S0092-8674(01)00381-6
  116. Palangat M, Landick R. 2001. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in nonequilibrium pausing by human RNA polymerase II. J Mol Biol. 311, 265-282. https://doi.org/10.1006/jmbi.2001.4842
  117. Gruber TM, D. Markov D, Sharp MM, Young BA, Lui CZ, Zhong HJ, Artsimovitch I, Geszvain KM, Landick R, Severinov K, Gross CA. 2001. Binding of the initiation factor sigma70 to core RNA polymerase is a multistep process. Mol Cell. 8, 21-31. https://doi.org/10.1016/S1097-2765(01)00292-1
  118. Toulokhonov I, Artsimovitch I, Landick R. 2001. Allosteric control of RNA polymerase by an interaction site for nascent RNA hairpins. Science. 292, 730-733. https://doi.org/10.1126/science.1057738
  119. Artsimovitch I, Svetlov V, Anthony L, Burgess RR, Landick R. 2000. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol. 182, 6027-6035. Erratum in J Bacteriol. 183, 1504. https://doi.org/10.1128/JB.182.21.6027-6035.2000
  120. Anthony LC, Artsimovitch I, Svetlov V, Landick R, Burgess RR. 2000. Rapid purification of His(6)-tagged Bacillus subtilis core RNA polymerase. Protein Expr Purif. 19, 350-354. https://doi.org/10.1006/prep.2000.1272
  121. Artsimovitch I, Landick R. 2000. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A. 13, 7090-7095. https://doi.org/10.1073/pnas.97.13.7090
  122. Davenport RJ, Wuite GJL, Landick R, Bustamante C. 2000. Single molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science. 287, 2497-2500. https://doi.org/10.1126/science.287.5462.2497
  123. Opalka N, Mooney RA, Richter C, Severinov K, Landick R, Darst SA. 2000. Direct localization of a beta subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 97, 617-622. https://doi.org/10.1073/pnas.97.2.617
  124. Yin H, Artsimovitch I, Landick R, Gelles J. 1999. Non-equilibrium mechanism of transcription termination from observations of single RNA polymerase molecules. Proc Natl Acad Sci U S A. 96, 13124-13129. https://doi.org/10.1073/pnas.96.23.13124
  125. Keene RG, Mueller A, Landick R, London L. 1999. Transcriptional pause, arrest, and termination sites for RNA polymerase II in mammalian N- and c-myc genes. Nucleic Acids Res. 27, 3173-3182. https://doi.org/10.1093/nar/27.15.3173
  126. Pan T, Artsimovitch I, Landick R, Sosnick T. 1999. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc Natl Acad Sci U S A. 96, 9545-9550. https://doi.org/10.1073/pnas.96.17.9545
  127. Mooney RA, Landick R. 1999. RNA polymerase unveiled. Cell. 98, 687-690. https://doi.org/10.1016/S0092-8674(00)81483-X
  128. Landick R. 1999. Shifting RNA polymerase into overdrive. Science. 284, 598-599. https://doi.org/10.1126/science.284.5414.598
  129. Mooney RA, Artsimovitch I, Landick R. 1998. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol. 180, 3265-3275. https://jb.asm.org/content/180/13/3265
  130. Gelles J, Landick R. 1998. RNA polymerase as a molecular motor. Cell. 93, 13-16. https://doi.org/10.1016/S0092-8674(00)81140-X
  131. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM. 1998. Force and velocity measured for single molecules of RNA polymerase. Science. 282, 902-907. https://doi.org/10.1126/science.282.5390.902
  132. Artsimovitch I, Landick R. 1998. Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release. Genes Dev. 12, 3110-3122. https://doi.org/10.1101/gad.12.19.3110
  133. Palangat M, Meier TI, Keene RG, Landick R. 1998. Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. Mol Cell. 1, 1033-1042. https://doi.org/10.1016/S1097-2765(00)80103-3
  134. Severinov K, Mooney RA, Darst SA, Landick R. 1997. Tethering of the large subunits of Escherichia coli RNA polymerase. J Biol Chem. 272, 24137-24140. http://www.jbc.org/content/272/39/24137
  135. Wang D, Severinov K, Landick R. 1997. Preferential interaction of the his pause RNA hairpin with RNA polymerase beta subunit residues 904-950 correlates with strong transcriptional pausing. Proc Natl Acad Sci U S A. 94, 8433-8438. https://doi.org/10.1073/pnas.94.16.8433
  136. Wang M, Yin H, Landick R, Gelles J, Block SM. 1997. Stretching DNA with optical tweezers. Biophys J. 72, 1335-1346. https://doi.org/10.1016/S0006-3495(97)78780-0
  137. Chan CL, Wang D, Landick R. 1997. Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3′ end spacing distinguishes pause and termination pathways. J Mol Biol. 268, 54-68. https://doi.org/10.1006/jmbi.1997.0935
  138. Chan CL, Landick R. 1997. Effects of neutral salts on transcript elongation and pausing. J Mol Biol. 268, 37-53. https://doi.org/10.1006/jmbi.1997.0934
  139. Wang D, Landick R. 1997. Nuclease cleavage of the upstream half of the nontemplate strand DNA in an Escherichia coli transcription elongation complex causes upstream translocation and transcriptional arrest. J Biol Chem. 272, 5989-5994. http://www.jbc.org/content/272/9/5989
  140. Landick R. 1997. RNA polymerase slides home: pause and termination site recognition. Cell. 88, 741-744. https://doi.org/10.1016/S0092-8674(00)81919-4
  141. Landick R, Roberts JW. 1996. The shrewd grasp of RNA polymerase. Science. 273, 202-203. https://doi.org/10.1126/science.273.5272.202
  142. Landick R, Wang D, Chan CL. 1996. Quantitative analysis of transcriptional pausing by RNA polymerase: his leader pause site as a paradigm. Methods Enzymol. 274, 334-353. https://doi.org/10.1016/S0076-6879(96)74029-6
  143. Landick R, Turnbough C Jr, Yanofsky C. 1996. Transcription attenuation. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd Edition (Neidhardt FC, Curtiss R 3rd, Ingraham JL, Low KR, B. Magasanik B, Schaechter M, Umbarger HE, eds.), pp. 1263-1286, American Society for Microbiology, Washington, D.C.
  144. Tavromina PL, Landick R, Gross CA. 1996. Isolation, purification, and in vitro characterization of recessive-lethal-mutant RNA polymerases from Escherichia coli. J Bacteriol. 178, 5263-5371. https://doi.org/10.1128/jb.178.17.5263-5271.1996
  145. Heisler LM, Feng G, Jin DJ, Gross CA, Landick R. 1996. Amino acid substitutions in the two largest subunits of Escherichia coli RNA polymerase that suppress a defective rho termination factor affect different parts of the transcription complex. J Biol Chem. 271, 14572-14583. http://www.jbc.org/content/271/24/14572
  146. Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J. 1995. Transcription against an applied force. Science. 270, 1653-1657. https://doi.org/10.1126/science.270.5242.1653
  147. Severinov K, Markov D, Severinova E, Nikiforov V, Landick R, Darst SA, Goldfarb A. 1995. Streptolydigin-resistant mutants in an evolutionarily conserved region of the beta’ subunit of Escherichia coli RNA polymerase. J Biol Chem. 270, 23926-23929. http://www.jbc.org/content/270/41/23926
  148. Severinov K, Mustaev A, Severinova E, Bass I, Landick R, Nikiforov V, Goldfarb A, Darst SA. 1995. Assembly of functional Escherichia coli RNA polymerase using beta-subunit fragments. Proc Natl Acad Sci U S A. 92, 4591-4595. https://doi.org/10.1073/pnas.92.10.4591
  149. Wang D, Meier TI, Chan CL, Feng G, Lee DN, Landick R. 1995. Discontinuous movements of DNA and RNA in E. coli RNA polymerase accompany formation of a paused transcription complex. Cell. 81, 341-350. https://doi.org/10.1016/0092-8674(95)90387-9
  150. Chan CL, Landick R. 1994. New perspectives on transcript elongation and termination by E. coli RNA polymerase. In Transcription: Mechanisms and Regulation (Conaway JW, Conaway RC, eds.), pp. 297-321, Raven Press, New York.
  151. Yin H, Landick R, Gelles J. 1994. Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys J. 67, 2468-2478. https://doi.org/10.1016/S0006-3495(94)80735-0
  152. Weilbaecher R, Hebron C, Feng G, Landick R. 1994. Termination-altering amino acid substitutions in the beta’ subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. Genes Dev. 8, 2913-2927. https://doi.org/10.1101/gad.8.23.2913
  153. Darst SA, Stebbins CE, Borukhov S, Orlova M, Feng G, Landick R, Goldfarb A. 1994. Crystallization of GreA, a transcript cleavage factor from Escherichia coli. J Mol Biol. 242, 582-585. https://doi.org/10.1006/jmbi.1994.1603
  154. Lee DN, Feng G, Landick R. 1994. GreA-induced transcript cleavage is accompanied by reverse translocation to a new transcription complex conformation. J Biol Chem. 269, 22295-22303. http://www.jbc.org/content/269/35/22295
  155. Feng G, Lee DN, Wang D, Chan CL, Landick R. 1994. GreA-induced transcript cleavage in transcription complexes containing E. coli RNA polymerase is controlled by multiple factors, including nascent transcript location and structure. J Biol Chem. 269, 22282-22294. http://www.jbc.org/content/269/35/22282
  156. Heisler LM, Suzuki H, Landick R, Gross CA. 1993. Four contiguous amino acids define the target for streptolydigin resistance in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem. 268, 25369-25375. http://www.jbc.org/content/270/41/23926
  157. Chan CL, Landick R. 1993. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J Mol Biol. 233, 25-42. https://doi.org/10.1006/jmbi.1993.1482
  158. Landick R, Turnbough C Jr. 1992. Transcriptional attenuation. In Transcriptional Regulation (McKnight SL, Yamamoto KR, eds.), pp. 407-446, Cold Spring Harbor Press, Cold Spring Harbor, New York. https://cshmonographs.org/index.php/monographs/article/view/3509
  159. Lee DN, Landick R. 1992. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol. 228, 759-777. https://doi.org/10.1016/0022-2836(92)90862-E
  160. London L, Keene RG, Landick R. 1991. Analysis of premature termination in c-myc during transcription by RNA polymerase II in a HeLa nuclear extract. Mol Cell Biol. 11, 4599-4615. https://doi.org/10.1128/MCB.11.9.4599
  161. Schafer D, Gelles J, Sheetz M, Landick R. 1991. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature. 352, 444-448. https://doi.org/10.1038/352444a0
  162. Landick R, Yanofsky C, Phung L, Choo K. 1990. Replacement of the Escherichia coli trp attenuator control codons alters operon expression. J Mol Biol. 216, 25-37. https://doi.org/10.1016/S0022-2836(05)80058-0
  163. Landick R, Stewart J, Lee DN. 1990. Amino acid changes in conserved regions of the beta-subunit of Escherichia coli RNA polymerase alter transcription pausing and termination. Genes Dev. 4, 1623-1636. https://doi.org/10.1101/gad.4.9.1623
  164. Lee DN, Phung L, Stewart J, Landick R. 1990. Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. J Biol Chem. 265, 15145-15153. http://www.jbc.org/content/265/25/15145
  165. Adams MD, Wagner LM, Graddis TM, Landick R, Antonucci TK, Gibson AL, Oxender DL. 1990. Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli. J Biol Chem. 265, 11436-11443. http://www.jbc.org/content/265/20/11436
  166. Landick R, Colwell A, Stewart J. 1990. Insertional mutagenesis of a plasmid-borne Escherichia coli rpoB gene reveals alterations that inhibit beta-subunit assembly into RNA polymerase. J Bacteriol. 172, 2844-2854. https://doi.org/10.1128/jb.172.6.2844-2854.1990
  167. Chan C, Landick R. 1989. The S. typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site: mechanistic implications of the effect on pausing of altered RNA hairpins. J Biol Chem. 264, 20796-20804. http://www.jbc.org/content/264/34/20796
  168. Ti-zhi S, Copeland BR, Landick R, Graddis JT, Oxender DL. 1988. Export of hybrid proteins of leucine-specific binding protein and trypotophan synthetase in Escherichia coli. Acta Biochim Biophys Sinica. 20, 364-370.
  169. Landick RC. 1987. The role of the paused transcription complex in trp operon attenuation. In RNA polymerase and the Regulation of Transcription. A Steenbock Symposium (Reznikoff WS, Burgess RR, Dahlberg JE, Gross CA, Record MT Jr, Wickens MP, eds.), pp. 441-444, Elsevier, New York.
  170. Landick R, Yanofsky C. 1987. Transcription attenuation. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt FC, Ingraham JL, Low KR, Magasanik B, Schaechter M, Umbarger HE, eds.), pp. 1276-1301, American Society for Microbiology, Washington, D.C.
  171. Landick R, Yanofsky C. 1987. Isolation and structural analysis of the Escherichia coli trp leader paused transcription complex. J Mol Biol. 196, 363-377. https://doi.org/10.1016/0022-2836(87)90697-8
  172. Landick R, Carey J, Yanofsky C. 1987. Detection of transcription-pausing in vivo in the trp operon leader region. Proc Natl Acad Sci U S A. 84, 1507-1511. https://doi.org/10.1073/pnas.84.6.1507
  173. Nazos PM, Antonucci TK, Landick R, Oxender DL. 1986. Cloning and characterization of livH, the structural gene encoding a membrane component of the leucine transport system in Escherichia coli. J Bacteriol. 166, 565-573. https://doi.org/10.1128/jb.166.2.565-573.1986
  174. Stewart V, Landick R, Yanofsky C. 1986. Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12.  J Bacteriol. 166, 217-233. https://doi.org/10.1128/jb.166.1.217-223.1986
  175. Landick R, Oxender DL, Ames GFL. 1985. Bacterial amino acid transport systems. In The Enzymes of Biological Membranes, 2nd Edition, Vol. 3 (Martonosi A, ed.), pp. 577-615, Plenum Press, New York.
  176. Antonucci TK, Landick R, Oxender DL. 1985. The leucine binding proteins of Escherichia coli as models for studying the relationships between protein structure and function. J. Cell. Biochem. 29, 209-216. https://doi.org/10.1002/jcb.240290305
  177. Landick R, Carey J, Yanofsky C. 1985. Translation activates the paused transcription complex and restores transcription of the trp operon leader region. Proc Natl Acad Sci U S A. 82, 4663-4667. https://doi.org/10.1073/pnas.82.14.4663
  178. Landick R, Oxender DL. 1985. The complete nucleotide sequences of the E. coli LIV-BP and LS-BP genes: implications for the mechanism of the LIV-I transport system. J Biol Chem. 260, 8257-8261. http://www.jbc.org/content/260/14/8257
  179. Landick R. 1984. Regulation of LIV-I transport system gene expression. In Microbiology 1984 (L. Leive and D. Schlessinger, eds.), pp. 71-74, American Society for Microbiology, Washington, D.C.
  180. Oxender DL, Landick R, Nazos P, Copeland BR. 1984. The role of membrane potential in protein folding and secretion in Escherichia coli. In Microbiology 1984 (Leive L, Schlessinger D, eds.), pp. 4-7, American Society for Microbiology, Washington, D.C.
  181. Nazos PM, Su TZ, Landick R, Oxender DL. 1984. Branched-chain amino acid transport in Escherichia coli. In Microbiology 1984 (Leive L, Schlessinger D, eds.) pp. 24-28, American Society for Microbiology, Washington, D.C.
  182. Copeland BR, Landick R, Nazos PM, Oxender DL. 1984. Role of membrane potential in protein folding and domain formation during secretion in Escherichia coli. In Protein Transport and Secretion (Oxender D, ed.), pp. 279-290, Alan Liss Inc., New York.
  183. Landick R, Duncan JR, Copeland BR, Nazos PM, Oxender DL. 1984. Secretion and degradation of mutant leucine-specific binding protein molecules containing C-terminal deletions. In Protein Transport and Secretion (Oxender D, ed.), pp. 265-278, Alan Liss Inc., New York.
  184. Landick R, Maguire D, Lutter LC. 1984. Optimization of polyacrylamide gel electrophoresis conditions used for sequencing mixed oligodeoxyribonucleotides. DNA. 3, 414-419. https://doi.org/10.1089/dna.1984.3.413
  185. Landick R, Vaughn V, Lau ET, VanBogelen RA, Erickson JW, Neidhardt FC. 1984. Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein may be a transcription factor. Cell. 38, 175-182. http://doi.org/10.1016/0092-8674(84)90538-5
  186. Landick R, Yanofsky C. 1984. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J Biol Chem. 259, 11550-11555. http://www.jbc.org/content/259/18/11550
  187. Copeland BR, Landick R, Nazos PM, Oxender DL. 1984. Role of membrane potential in protein folding and domain formation during secretion in Escherichia coli. J Cell Biochem. 24, 345-356. https://doi.org/10.1002/jcb.240240405
  188. Landick R, Duncan JR, Copeland BR, Nazos PM, Oxender DL. 1984. Secretion and degradation of mutant leucine-specific binding protein molecules containing C-terminal deletions. J Cell Biochem. 24, 331-344. http://doi.org/10.1002/jcb.240240404
  189. Landick R, Daniels CJ, Oxender DL. 1983. Influence of membrane potential on the insertion and transport of proteins in bacterial membranes. In Methods in Enzymology, Vol. 97, Biomembranes, Part K, Membrane Biogenesis: Assembly and Targeting (Prokaryotes, Mitochondria, and Chloroplasts) (Fleischer S, Fleischer B, eds.), pp. 146-153, Academic Press, New York.
  190. Daniels CJ, Anderson JJ, Landick R, Oxender DL. 1981. The in vitro synthesis and processing of the branched-chain amino acid binding proteins. J Supramol Struct. 14, 305-311. https://doi.org/10.1002/jss.400140305
  191. Landick R, Anderson JJ, Mayo MM, Gunsalus RP, Mavromara P, Daniels CJ, Oxender DL. 1981. Regulation of the high-affinity leucine transport genes of Escherichia coli. J Supramol Struct. 14, 527-537. https://doi.org/10.1002/jss.400140410
  192. Landick R, Oxender DL. 1982. Bacterial periplasmic binding proteins. In Membranes and Transport: A Critical Review, Vol. 2 (Martonosi A, ed.), pp. 81-91, Plenum Press, New York.
  193. Landick R, Anderson JJ, Mayo MM, Gunsalus RP, Mavromara P, Daniels CJ, Oxender DL. 1981. Regulation of the high-affinity leucine transport genes of Escherichia coli. In Progress in Clinical and Biochemical Research, Membrane Transport, and Neuroreceptors (Blume A, Diamond I, Oxender D, Fox CF, eds.), pp. 343-353, Alan Liss Inc., New York.
  194. Daniels CJ, Anderson JJ, Landick R, Oxender DL. 1981. The in vitro synthesis and processing of the branched-chain amino acid binding proteins. In Progress in Clinical and Biochemical Research, Membrane Transport, and Neuroreceptors (Blume A, Diamond I, Oxender D, Fox CF, eds.), pp. 319-325, Alan Liss Inc., New York. [PDF]
  195. Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Yanofsky C. 1980. Amino-terminal sequence and processing of the precursor of the leucine-specific binding protein, and evidence for conformational differences between the precursor and mature form. Proc Natl Acad Sci U S A. 77, 2005-2009. https://doi.org/10.1073/pnas.77.4.2005 [PDF]
  196. Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Selker E, Yanofsky C. 1980. Structural and functional analysis of cloned DNA containing genes responsible for branched-chain amino acid transport in Escherichia coli. Proc Natl Acad Sci U S A. 77, 1412-1416. https://doi.org/10.1073/pnas.77.3.1412 [PDF]
  197. Marino JP, Landick RC. 1975. 1-Phenylthiocyclopropyl-triphenylphosphonium fluoborate: a new synthon for cyclopentanone synthesis. Tetrahedron Lett. 51, 4531-4534. https://doi.org/10.1016/S0040-4039(00)91063-3 [PDF]